An estimation of causal structure based on Latent LiNGAM for mixed data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Estimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data

This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...

متن کامل

Measuring Latent Causal Structure

Discovering latent representations of the observed world has become increasingly more relevant in the artificial intelligence literature [Hinton and Salakhutdinov, 2006, Bengio and Cun, 2007]. Much of the effort concentrates on building latent variables which can be used in prediction problems, such as classification and regression. A related goal of learning latent structure from data is that ...

متن کامل

Causal Inference on Multivariate Mixed Type Data

Given data over the joint distribution of two univariate or multivariate random variables X and Y of mixed or single type data, we consider the problem of inferring the most likely causal direction between X and Y . We take an information theoretic approach, from which it follows that €rst describing the data over cause and then that of e‚ect given cause is shorter than the reverse direction. F...

متن کامل

Inferring Latent Structure From Mixed Real and Categorical Relational Data

We consider analysis of relational data (a matrix), in which the rows correspond to subjects (e.g., people) and the columns correspond to attributes. The elements of the matrix may be a mix of real and categorical. Each subject and attribute is characterized by a latent binary feature vector, and an inferred matrix maps each row-column pair of binary feature vectors to an observed matrix elemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Behaviormetrika

سال: 2019

ISSN: 0385-7417,1349-6964

DOI: 10.1007/s41237-019-00095-3